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MEAS_S AND CALCULATIONS OFT HE EFFECTS

OF DISTORTIONS IN THE COLLECTOR SURFACE ONEFFICIENCIES

OF UMBRELLA-TYPE SOLAR COLLECTORS

By Victor R. Bond

St%_4ARY

The meridional tensions along the ribs in a Mylar-covered umbrella-

type solar collector produce a distortion in the reflecting surface that

is detrimental to the image in the focal plane. The investigation

reported herein was made to obtain measured and calculated geometric

efficiencies of umbrella-type collectors as affected by these surface
distortions.

These studies show that if the tension transverse to the ribs is

increased relative to the meridional tensions, the distortion is reduced

and higher efficiencies can be attained, and if the transverse tension

is small 3 the number of ribs in the collector must be increased for

higher efficlencies.

INTRODUCTION

Studies (for example, ref. I) have shown that umbrella-type struc-

tures made up of a number of curved parabolic ribs and covered with a

thin material 3 such as alumlnizedMylar, so arranged as to make an

approximste paraboloidj would provide mirrors that are capable of col-

lecting solar energy. These umbrella-type structures would be light in

weight and easily folded for packaging. The structure would only

approximate a perfect paraboloid of revolution, because the surface

between any two ribs would be segments of a cylindrical paraboloid.

This distortion from the true paraboloidal shape is present regardless

of the way in which the material is applied to the ribs. In addition

to this distortion, there exists a distortion due to the meridional
tensions in the membrane. These tensions are introduced when the

material is applied to ribs and serve the purpose of eliminating

wrinkles that develop transverse to the ribs. This distortion is

toward the axis of symmetry of the approximate paraboloid and causes a



dispersion of the light rays in the theoretical focal plane of the col-

lector. The result is a loss in concentration efficiency.

The effects of the distortion due to the meridional stresses have

been studied both experimentally and analytically and the results are

presented herein. The effects are studied in the focal plane only, and
not with a three-dimensional receiver at the theoretical focal point.

SYMBOLS

a

C

Cl,C2,C 3

CS

F

f

h

K

N

R

r

S

S

S I

X,Y,Z

X'

constant of proportionality, relating shear stress to the

coordinate x, lb/cu ft

concentration ratio, R2/r 2

constants of integration

mean solar constant of radiation, Btu/ft2-sec

a function of x,y,z'

theoretical focal length of collector, ft

thickness of membrane, mils

stress-geometryparameter, af/q s ,

number of ribs in collector

heat incident in unit time on a unit length along X'-axls,

Btu/ft2-sec

radius of collector, ft

radius of an aperture in focal plane, ft

axis tangent to a meridian, ft

arc length along a meridian of paraboloid, ft

arc length along distorted surface, ft

coordinate axes of collector, ft

axis in focal plane parallel to X-axis, ft
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W

x,y,z

W

X'

Z t

P

_s

_s ;max

_s'

T

axis in focal plane parallel to Y-axis

axis normal to the undeformed surface

coordinates along X-, Y-, and Z-axes, respectively, ft

coordinate along normal W-axis, ft

coordinate along X'-axis, ft

height of a point on the distorted surface above the XY plane

y2
angle between Y-axis and a tangent to the parabola z =

4f

fraction of initial position by which reflected ray is
deviated in the focal plane

ratio of energy received through an aperture in collector

focal plane to total energy that was specularly reflected
from collector

rim angle of collector (angle between optic axis and line

Joining origin of coordinate axes of theoretical focal

plane with collector rim)

angle between a deviated reflected ray and path of an undeviated

ray projected in a horizontal XY plane

parabola z = 4_-_f,ftradius of curvature of

tensile stress along a meridian, lb/sq ft

maximum value of as

tensile stress transverse to ribs, lb/sq ft

shear stress in membrane, lb/sq ft

APPARATUS AND TESTS

The models that were constructed for testing represented one segment

of an umbrella-type collector, geometrically similar to that shown in fig-

ure 1 and had rigid sides made of 1/4-inch aluminum alloy cut to the

desired parabolic shape. The metal sides were attached to a metal base

plate to keep the sides from moving with respect to each other. A surface



of Mylar was applied over the area between the two parallel plates as

shown in figure 2. The Mylar, being in tension, caused the side plates

to deflect in toward each other. This deflection was eliminated by

wedging wooden struts between the plates. These struts not only made the
sides vertical but also increased the tension transverse to the ribs.

Six models were constructed. Three had a rim angle e of 90 ° and rep-

resented segments from collectors of 30, 60_ and 90 ribs, and three had

a rim angle e of 45 ° and represented segments from collectors of 30,

60, and 90 ribs. All models had a radius R of 36 inches. In building

the models, no attempt was made to fix the tensions in the surface at

any specific value. The models were constructed so that enough tension

parallel to the ribs was present to eliminate surface wrinkles, and

enough transverse tension was present to make the surface as flat as

po ssible.

The models were tested on the apparatus shown in figure 3. The

test apparatus was a rigid metal stand with three horizontal surfaces

suppoI_ced by six vertical steel rods. The bottom surface was a flat

metal plate that served as a support for the models. The top surface

was 1/4-inch plate glass and served as a transparent support for the

light source. Attached beneath the glass plate was a metal plate in

which a grid of 1/8-inch holes had been drilled at 1/2-inch intervals.

These holes served as a coordinate system for the narrow-beam light

source resting on the glass plate above. The middle surface was another

glass plate_ the lower surface of which coincided with the intended focal

plane of the collector. Glued to the lower surface of this plate was a

piece of rectangular coordinate graph paper. The position of the center

of an image in the focal plane was read directly from the graph paper

and recorded.

The light source was a 25-watt direct-current lamp, the rays of

which were collimated with a 13-inch focal-length achromatic lens. A

mask blocked off all the light except that through a 1/16-inch hole at

the center. The narrow beam of light was made perpendicular to the

three horizontal surfaces of the test stand by means of three leveling

screws in the base of the lamp and lens housing. The beam of light was

thus parallel to the optic axis of the collector.

A schematic diagram of the experimental apparatus is shown in fig-

ure 4. The light source was positioned on the glass plate over the

desired point on the model surface. The incident light ray was reflected

from the model surface onto the grid in the focal plane. The coordinates

of the center of the image were read directly from the grid and recorded.

The entire surface of the model was surveyed in this manner at regular

intervals of area. A plot was made of all the images in the focal plane,

and from this plot the experimental geometric efficiency was determined.
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The geometric efficiency of a collector qG, as used in this report,

is the ratio of the energy received through an aperture of radius r in

the collector focal plane to the total energy that was specularly reflected

from the collector. Thus, the geometric efficiency is a measure of the

effect of the major surface distortions of the collector at a given con-

centration ratio. By definition, geometric efficiency does not include

losses due to absorptivity of the surface, diffuse reflectivity, minor

surface errors, or improper orientation of the collector.

The concentration ratio C is defined as the ratio of the projected

collector area z_R2 to the aperture area in the focal plane _r2. The

geometric efficiency is usually presented herein as a function of the

concentration ratio.

Parallel light, or a point source at infinity, is used or assumed

throughout this investigation. The results are therefore not strictly

applicable to the case of a mirror used to concentrate sunlight, since

the solar disk subtends an arc of approximately 32 minutes in the vicin-

ity of the earth. Concentration capability in sunlight is consequently

always less than in parallel light. However, it can be shown that for a

perfect 90-rib umbrella collector, that is# one having no inward curva-

ture of the surface between the ribs, no more than about 3 percent of

the reflected sunlight will fall outside of the maximum image diameter

formed by parallel light. For less-than-perfect umbrella collectors,

and for smaller numbers of ribs, the differences between the results

obtained with sunlight and with parallel light will be much less than

3 percent. It is apparent, therefore, that the increased complexity

of including the effects of a finite source size is not warranted in

an analysis of an umbrella collector. These effects would, of course,

have to be included in the analysis of more precise mirrors.

Experimental Calculations

If all image points collected in the focal plane are assumed to

represent the same amount of projected collector area, the geometric

efficiency may be determined from the data by calculating the ratio

of the number of image points in an aperture in the focal plane of

radius r to the total number of image points received in the focal

plane.

The geometric efficiency _G was obtained for several aperture

radii for each model tested, and the results are presented as a

function of concentration ratio in figure 5.
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Analytical Results

The complete derivations of the equations used in calculating the

theoretical geometric efficiency is given in the appendix. Briefly,

the procedure was as follows: The surface equation was derived by

considering the tensile forces acting on a small area of the model

surface. The surface contour in the XZ plane between two adjacent ribs

was found to be parabolic. An example of the surface contour for a

60-rib collector is shown in figure 6. With the surface shape known,

the position at which any given light ray falling on the surface would

be reflected in the focal plane could be determined and an energy distri-

bution in the focal plane could be obtained. The assumption was made

that all the energy from any one segment of the collector would be con-

centrated along the aperture diameter parallel to the X-axis. This

assumption is consistent with the fact that the distortions are so small

that essentially only the X projection of the normal to the surface

is changed by the distortions. The Y component of the normal changes

very little.

An example of the energy distribution for a 60-rib collector over

a radius in the focal plane is shown in figure 7- The relations used

are given in the appendix. From the energy distribution, the geometric

efficiencies were calculated for each radius where it had been determined

experimentally. The results are shown in figure 8 compared with the

experimental curves. The geometric efficiency is shown plotted against

concentration ratio for a particular model and for a range of the stress-

geometry parameter K of O, 2, and 4.

The stress-geometry parameter K is shown in the appendix to be

as ,max
a function of the maximum stress ratio --, which occurs at the

vertex of the umbrella segment3 and of the geometry. It is shown that

_fGs,max

the parameter K is 0.pDo. _s' for a collector with a 90 ° rim angle

[R = 2_ and is 1.216 qs'max for a collector with a 45 ° rim angle
\i /

G s ,

f

Comparison of Experimental and Analytical Results

No attempt was made to measure the stresses in any of the col-

lector models. The transverse tension was increased by addition of

struts between the sides of the model until very little curvature

could be detected visually. From figure 8 it is apparent that the
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90°-rlm-angle models had smaller stress-geometryparameters than did the

4_°-rlm-angle models. This result is consistent with the result shown

in the appendix; namely, that K should be smaller for the model with

a 90°-rim angle than wlth a 4_o rim angle, if the maximum tension ratio

is assumed to be the same in both models.

For the models with rim angles of 90 ° , the experimental curves lle,

in general, between the calculated curves with stress parameters K of

2 and 4 for the models of segments from 60- and 90-rib collectors, and

between the calculated curves with stress parameters K of 0 and 2 for

the segments from a 30-rib collector.

For the models with rim angles of 4_ °, the experimental curves lie

in the region to the left of the calculated curves with stress param-

eter K of _ for the models of segments from 60- and 90-rlb collector,

and between the calculated curves with stress parameters K of 2 and

4 for the segment from the 30-rlb collector.

The experimental curves are seen to be at least 20 percent less than

the maximum calculated geometric efflclencies, where the stress-geometry

parameter is zero, in spite of the care to flatten the surface contours

of the model. The experimental curves are lower primarily because of

the nature of the surface curvature. A secondary effect is reduction

of efficiency caused by dispersion of a few points which fell on local

irregularities of the membrane.

For a given concentration ratio and configuration, the efficiency

decreases with increasing stress parameter, as shown in figure 8. For

example, with a 60-rib 45°-rlm-angle collector at a concentration ratio

C of 1,O00, the geometric efficiency is 0.83, 0.66, and 0._3 for stress

parameters of 0, 2j and 4, respectively.

Figure 9 presents cross plots of the data from figure 8 at a con-

centration ratio of 1,O00. The geometric efficiency is presented as
a function of the number of ribs N. It is seen that the 4_°-rim -

angle models have higher theoretical efficiencies than the 90°-rlm -

angle models for the same stress-geometry parameter. However, the

experimental geometric efficiencies are about the same at a concen-

tration ratio of 1,O00. Experimentally, the geometric efficiency

increases linearly over the range of ribs from 30 to 90. A slight

linear extrapolation of the experimental curves shows that in order

to provide an efficiency of 0.80 at a concentration ratio of 1,O00,

a collector would require about 106 ribs for a 4_ ° rim angle and about

llO ribs for a 90 ° rim angle.

Also, from figure 9, it is seen that a lower limit to the number

of ribs necessary for a usable calculated efficiency of 0.90 at a



concentration of 1,000 exists. For example, in the case of 45°-rim-
angle collectors (fig. 9(a)), a collector with a stress parameter K
of 2 must have 88 ribs and a collector with a stress-geometry param-
eter K of 4 must have 106 ribs. In order to attain high geometric
efficiency, collectors must be constructed with small stress-geometry
parameters, or with a large numberof ribs.

CONCLUSIONS

The effects of distortions in the collector surface on the effi-
ciencies of umbrella-type solar collectors have been investigated
experimentally and theoretically, and the following conclusions are
indicated:

1. For a given model and concentration ratio, the theoretical
geometric efficiency decreases as the stress-geometry parameter K
increases. For example, the maximumtheoretical geometric efficiency
attainable for stress-geometry parameter zero at a concentration of
1,000 is 0.83 for a 60-rib collector with 45° rim angle. Whenthe
stress-geometry parameter has values of 2 and 4, the efficiencles
attainable are reduced to 0.66 and 0.53, respectively.

2. For an umbrella-type solar collector to have high efficiency,
it must be constructed so that either the stress-geometry parameter is
small (that is, the transverse tension is large) or the numberof ribs
is large. For a collector with a rim angle of 45° , an efficiency of
0.90 at a concentration of 1,O00 maybe obtained with 88 ribs and a
stress-geometry parameter of 2, or with 106 ribs and a stress-geometry
parameter of 4.

3. Calculations showthat collectors with 45° rim angles give higher
geometric efficiencies than the collectors with 90° rim angles for the
sameconcentration and stress-geometry parameter. Experimentally, there
was little difference in the geometric efficiencles at a concentration
ratio of 1,000 in the range between 30 to 90 ribs. The 90°-rim-angle
models had smaller stress-geometry parameters than did the 45°-rim-angle
models. It was also shownby calculation that the 90O-rim-angle collec-
tors should have smaller stress-geometry parameters than the 45°-rim -
angle collectors.
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The experimental geometric efficiencles were in all cases about

20 percent below the maximum calculated efficiencies, which were for

collectors with stress-geometry parameter of zero.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Field, Va., May 22, 1961.
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APPENDIX

ANALYTICAL DERIVATIONS

Derivation of Surface Equation

The equation of the surface between the two parabolic ribs of an

umbrella-type collector is found by considering the forces that act

upon a small element of the surface ds ds'. (See sketches 1 and 2.)

Z

X

X
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Sketch i Sketch 2

If the number of ribs is large, 30 or greater, then the projection of

the segment in the XY plane is a good approximation to a triangle of

height R and base 2_R/N.

The forces on the element are resolved (as shown in sketch 3) along

the orthogonal axes, W, S, and X which have their origin at the center

of the initial position of the element.

_/ "X (projected)

Sketch 3

I



The axis W is normal to the undeformed surface at the point P; S is

tangent to the surface at P and lles in a plane parallel to the

YZ plane.

Consider the stresses acting on the surface element as shown in

sketch 4. Assume that the angles made by the stresses with the axes S

and X are small.
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65 + 8_s as

Sketch 4

For equilibrium in the X-dlrection,

_s' + _ dx - _s h ds +
+ _s ds - _]_h dx = 0

or

___+ _ = 0
_x _s

For equilibrium in the S-directlon,

(i)

_s + _-s ds - _ h dx +
+ _x dx - v]h ds = 0
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ds

z v - Z

ms

Sketch 5

I



if two small terms due to the curvature of the ribs are neglected. This

equation simplifies to

+--= o (2)
_s _x

L
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For equilibrium along the normal, or W, direction, several force

components are to be taken into account. The normal components due to

stresses _s, ds, , and T are as follows:

(a) The principal part of the normal component is due to the curva-

ture of ribs. (See sketch 9.) This component becomes, for rib radius

of curvature p,

II_ _ds )sin(dS_+ ds

+ ds sln(dS_

s _-_ \2_/ ,,¢_/..j
h dx = dsh--

ds dx

P

since ds/2p is a small angle and terms in (ds) 2 are neglected.

(b) The normal component due to the stress
s

surface. This component, as seen from sketch 9, is

acts in the deformed

s + 8s d + _ d h dx - qs m h dx = s
_s 2 _s

if terms in (ds) 2 are neglected.

(c) Also present is a normal component due to _s'"

ponent is found in a manner analogous with that due to

1.
This com-

_S as



(d) A normal component due to the shear stress T acting in the

membrane is illustrated in sketch 6.

Distorted __ T + bT dx /
__ surface / _ _% _-- /

_d__ ___:o:ted__

w__ ds
bx 8x bs

Sketch 6

This component becomes,

where terms in (ds) 2 and (dx) 2 are neglected.

Collecting all normal components found in the preceding para-

graphs (a), (b), (c), and (d) for equilibrium in the normal direction

gives

I
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Rearranging and dividing this equation by h dx ds yields

s +T + s' + 1" +-_s =0 (3)
P

Inasmuch as the deflections are small, it is assumed that _w_ 0.
8s

The normal force in equation (3) then becomes

It is also assumed that the stress _s' does not vary with x;

8_s' _ O. This assumption signifies that the tensile stress
that is, _x

across the rib in the x direction at any point remains constant when

the surface is deformed; therefore, for equilibrium in the normal

direction,

_s ' _,x 2 p
(4)

Equations (1), (2), and (_) are the equilibrium equations for the

membrane.

8_ s ,

With the assumption that _x _ 0, equation (1) becomes 8T _ 0.bs

This means that T cannot be a function of s or of y since s

depends on y. Therefore, T = T(X).

Assume now that T = ax. This condition allows the shear stress

to vanish at the center of the surface and to be a maximum at the

boundary. If T = ax, then from equation (2),
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Thus, qs depends upon

Since

' (_S '

8% 8T- - -a (_)
8s _x

s and y. Equation (4) may be written

82w+T 8 _ + 0 (6)
_Sx2 P

_x 2

and since from equation (2), it is seen that _s and _ are of the same

order of magnitude, the second term of equation (6) may be neglected

compared with the first. Equation (4) then becomes

82w + -- = 0 (7)_S

_s' _x 2 p

Because _s' does not depend on x, and because d s and p are

functions of y, equation (7) maY be integrated to give

_W dS
- x + cz (8)

_s' _x P

Since w is symmetrical with respect to x,

C1 = O. Integration of equation (8) gives

(_=0 = O, so that

i ds x2 + C2

2 (;s,p

(9)

=

At the boundary, where x _ y, w = O, and therefore

i ds _2 y2

C2 - 2 ds,p N2

Therefore, the normal deflections (eq. (9)) are given by

(io)

1
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The vertical deflections are seen from sketch 9 to be,

(ll)

where

Since

z' - z = w cos

cos c_ = dy = i
ds

(12)

(13)

d z =Y__
dy 2f

and, therefore, equation (13) becomes

COS Ct =

The radius of curvature p is defined by

p --

+( zf] 3/2

d2z

dy 2

1+ _]3/2= 2f 4f_

With these substitutions for cos m and p

vertical deflections z' - z become
in equation (12), the
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Evaluation of Stress as and Stress-Geometry Parameter K

From the assumption that T = ax and equation (2), the stress

8_s

may be found. Since equation (5) shows that 8s - -a,

a s =-a / ds

When this equation is integrated,

a s = -a + + log e +
4f 2

When y = R, a s = O, and the constant C3 becomes

a s

(]-5)

(16)

L

1

3
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9

(i+R2kil2+io_[_c3: _ 4-7)

The stress a s (eq. (16)) is therefore

_s = af_
_2kl/2 y +ioge

1

i

R__+ (i
2f

I

-I
+ R2_7_.]1/2

-#

(17)

(_8)

I !
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A convenient constant for making calculations may be found from

equation (18). At the origin (x = y = z' = 0), the stress as takes
on its maximum value

+R_I_I_ _
$-_) + log e + +4f2̧ JlI

J

Dividing this equation by as, and solving for af/_s, , which is
defined as K, gives

K - af _ _s,max/_s' (19)

The parameter K thus depends upon the maximum stress ratio

_sjmax/_s, and the geometry of the umbrella segment R/f.

For the two values of R/f investigated herein, K is obtained as:

For 8 = 45 ° or I = 0.8293

K = 1.216 as'max

a s ,

For 0 = 90 ° or _ = 2.000,
f

a s ,
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Determination of the Deviation of a Point Image

in Focal Plane

A ray of light incident upon the deformed surface is reflected to

a point in the focal plane, as shown in sketch 7-

X

EX

X

R

Reflected

ray

,y

Sketch 7

The reflected ray lles in the plane containing the normal to the surface

and the incident ray.

The projections in the XY plane of the normal to the deformed sur-
face are proportional to the directional derivatives, 8F/3x and

3F/_y, of the normal. The projections of the reflected ray in the

XY plane coincide with the projections of the normal and are thus also

proportional to 8F/_x and 3F/_y.

The function F is merely equation (14) rewritten as

The directional derivatives

diately to be

8F/ x and 8F13 '

_S
--X

(_s t

are found imme-
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and

The directional derivative 3F/3y is found from the relation,

L
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3
0

9

= 8z' _ 3F

8F/Sz' &Z By

since 8F _
8z---T - 1. Inasmuch as the deflections z' - z are small, the

t%

slope 3z/_y of the parabola z = y_ is nearly the same as 8z'/Sy.
4f

That is, since

Z' - Z = Z' - -- _ 0

4f

8z _ 8z' _.Z_
_Z By 2f

Consequently, the directional derivative

2f

_F/_J becomes

From sketch 7, the angle _ that the deviated reflected ray makes

with the undeviated ray in the XY plane is

tan_ = - _Fl_x.= ¢
_FI_
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since is a small angle. So the angle _ becomes

(_S
-- X

d s '

"I

The deviation along the X'-axis in the focal plane is

cx = y_

Therefore,

EX =

dS
-- X

S'

4f2/

L
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The coordinate x' of the deviated ray in the focal plane is

X' =X + EX

or

X ! = X

+

An investigation as to the deviations of the reflected ray along

the Y- and Z-axis near the focal plane may be made by comparing the

directional derivatives of the normal to an undistorted surface with

those just calculated for the normal to the distorted surface.

undistorted surface,

Z T ---- Z = _-_

4f

(20)

For an

i

i
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and

F(x,y,z') = z' - y2 = 0
4f

The directional derivatives of the normal to this surface are:

L

1

3
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and

8F
-0

8x

For the distorted surface it has been shown that

_F

_x

(YS
--X
_S '

and

_F y

By 2f

It is seen, then, that the normal projections do not change at all

along Z and are very nearly the same along Y. The only significant

change in the normal is along the X-axis. It is assumed throughout

this report, then, that all of the reflected rays will fall on the
X-axis.
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Calculation of Flux Distribution over a Diameter in

the Focal Plane

On the surface between the two ribs, there is some locus of points,

beginning at y = R and terminating on a rib at Y = Y0, which will
always reflect a ray of light to the same point on the X'-axis in the

focal plane. (See sketch 8.)

X

Y =Y0

dx'"

Y

L

1

3
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Sketch 8

From the law of conservation of energy

or

From equation (20)

CS dx'

where

aN I

-l+e
dx

E - O's/O" s v

4f2/
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Then,

C S 0

L

1

3

0

9

R
dy

_s/(_s I
I+

2

Or, in nondimensional form,

d(y/2f)

1 + - s s

 f2j

(21)

This equation (eq. (21)) has been evaluated by graphical integration.

The values of Q/Csf obtained are plotted as functions of x'/f in fig-

ure 7. The quantity x'/f is obtained from equation (20), which has

been nondlmensionallzed to give

(22)

Calculation of Geometric Efficiency and Concentration Ratio

The geometric efficiency as a function of concentration ratio is

obtainable from relations shown in equations (21) and (22) as described

in the following paragraphs.
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First, plot of Q/Csf against x'/f as shown in sketch 9.

Csf

X !

Sketch 9

The total nondlmenslonal energy absorbed by the radius in the focal

plane is

j?o(_'If)m_ I_Id_,sf T

The energy received by the radius, when only a portion of the radius

out to x_' = r is exposed is
f f

The geometric efficiency is then given by

x'

I



This relation was solved by graphical methods for a particular segment

with a given stress-geometry parameter K. The geometric efficiency was

plotted as a function of the concentration ratio C where,

2
(r/f)

L
1
3
0
9

Since the same integration could be obtained for the total number N

of the collector segments, the total geometric efficiency is the same as

that for one segment.
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